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Under consideration is a method based on the quantum analogy of turbulence and 
its application to the problem of a turbulen~ mixing layer. 

The quantum analogy of motion can inherently be applied to turbulence ~s a wave phenom- 
enon with a probabilisitic nature of fluctuations, inasmuch as vortices in a large array 
behave like wave--particle formations [I]. A change in the state of a vdrtex, that is a 
fluid "quantum" particle of unit volume, is defined by the equation 

ih O~ h a - - - -  V2% i = / : l .  (1) 
Ot 29 

Here and henceforth V 2 denotes the Laplace operator. We now represent the wave function in 
the form ~ = aexp (ib) so that, after separating its real and imaginary parts in Eq. (I), we 
obtain 

- - h  O b -~ p2 h2 V 2a (2) 

Ot 2p 29 a 

Oa z 
h div (a 2 grad b) = P - - ,  (3) 

Ot 
where p = hlgrad b I, and grad b is the wave vector. Passage to the limit on the side of non- 
turbulent flow (h * 0, b + ~) reveals that Eq. (2) will express the kinetic energy of a vor- 
tex E = --h3b/3t (--3b/3t denoting the fluctuation frequency) in corpuscular-wave terms if p = 
pU. When h =/= 0, then 

E = -- + AE, (4) 

2p 

w i t h  the  q u a n t i t y  AE = - - ( h 2 / 2 p ) a - l V 2 a  r e p r e s e n t i n g  t h e  s p e c i f i c  t u r b u l e n t  e n e r g y  i n c r e m e n t  
and also, because of the statistical nature of irregular vortex flow through a background of 
average motion, representable as the mathematical expectation of the random energy spread. 
Postulating that the quantity a 2 represents the probability density of the excited state of 
a vortex (i.e., characterizes its proneness to oscillatory excitation), one can write AE = 
a2p2/2p. Combining these two definitions of AE yields 

v2a + [grad bl2a a = O. (5) 

Since excitation of a vortex is likely to occur (a vortex is necessarily in some phase of 
oscillation), we have 

a2db = 1, (6) 

with the integral taken over all phases within the region of vortex existence. The probabil- 
ity flux a 2 is described by Eq. (3). In the case of steady turbulence 3a2/3t = 0. 

Along one axis of coordinates s the quantity k = 13b/3s[ is the wave number and the wave 
front describable by the ~-function can be represented as 

i F(k)exp(iks)dk, F ( k ) -  1 ; ~(s)exp(--iks)ds, (7) 
1 

with ~(s) § 0 as s § co and s § (the wave motion vanishes beyond the turbulence zone, where 
a = 0). Normalization (6) implies the existence of correspondence relations 

i * ( s l**(s )ds=N'  i F(k) F * ( k ) d k : N '  (8) 
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where N is the normalizing multiplier and ~*(s), F*(k) are complex-conjugate functions. Con- 
sidering that s is measured from the center of the wave packet, according to relations (8), 
one can write for the mean-square displacement of a vortex <si> and for the corresponding 
spread of the wave number squared <ki> 

N ( ss > : j s~,(s)** (s)ds, (9) 

N (  k s )  ~-- ~ kZF(k) F*(k)dk,  .2 (10) 

respectively. 

< k 2 > = -  ~ ~* (s) o ~  ds. N 
d Os 2 

There exists a constraint of the indeterminacy kind [2], namely 

I 
(ss> <ks>>~ - 

4 

This can be verified by considering the G. Wail expression 

With the representation (7), the integral in expression (10) transforms into 

(11) 

(12) 

(13) 

which is positive-definite for any e. Considering (9) and (ii), we obtain I(e)--N((si)-- 
g+(ki>e s) from (13). Inasmuch as the polynomial I(s) is positive, its discriminant 
is 1- 4 <si>.<ki> ~ 0 and this signifies that relation (12) holds true. Defini- 
tion (4) suggests that, inasmuch as AE = aipi/ip, it is necessary to assume <ki> = (l + ai)k ~. 
Consequently, according to constraints (12), 

I 
( s z ) (I + aZ) kz~ - (14) 

4 

At the limit, fluctuation of a vortex becomes equal to its intrinsic dimension. Such a limit 
corresponds to the smallest possible, under constraint (14), vortex "radius" 

< s~ > 1/2 = l _ k - t ( 1  +a~)-1/2.  (15) 
2 

A stationary structure of the fluctuation field is realized in the form of a standing wave 
with a phase difference ~ between neighboring nodes. Flow of the vortex medium with an appre- 
ciable momentum "content" p = oU is realized within a narrow region of the wave packet, namely 
where superposition of elementary waves according to relation (7) results in their mutual 
amplification. 

In the "boundary layer" approximation (3/3y >> 3/3x) Eqs. (3) and (5) become 

 (ob o (16) 
av - - T  =o, 7fv. ou / 

In the absence of a characteristic dimension there exist in the mixing layer (Fig. I) self- 
adjoint distributions of flow parameters [3] where the transverse dimension of the turbulence 
zone 6 = yx, where y is some constant. Equations (16) with a = a (,~), b = b*(~), and ~ = y/6 
yield 

aSb ' = c ,  aa" -[- c a = O. ( 1 7 ) 

Here c is the integration constant. Since the change of ~ over the entire layer width is 
equal to unity, the first of Eqs. (17) yields:faidb = c. Taking into account relation (6), 
we obtain c = I. The maximum of a occurs inside the layer, most likely within the region of 
contact with the stationary medium, where the probability of excitation of unstable perturba- 
tions is highest. The second of Eqs. (17) yields a' = • I/2, whereao is the maxi- 
mum wave amplitude. We now introduce a variable r such that a = aoexp(--ri). We then have 
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Fig.  1. Schematic diagram of  mixing l a y e r .  

d~ db 
= ~  -t/-ff expr< (19) d7 = ~ / f f  ao exp (--rZ), (18) dr ao 

The Upper sign in expressions (18) and (19) corresponds to ~<~0 , while the lower sign here 
correspond to the region ~>~0~, with ~=~ corresponding to the fluctuation peak (where a' = 
0). Outside the mixing zone a + 0 and r § ~. Normalizing the amplitude according to expres- 

sion (6), with relation (19) taken into account, we obtain ao = I/2/~ = 0.4 as the result. 
The solution to Eq. (18) with ~ = 0 at some r = rl can be written as 

( S ) ~ = ~ [~(rt)-T ~(r)], ~(r)  = 2_ exp (-- r 2) dr . (20) 
y ~  

0 

According to exp re s s ion  (19),  

b = ~  lfl2-.D(r), ( D ( r ) =  S expr~dr). (21) 
ao o 

At the point ~ = 0 the wave number 13b13x[ = %/a2x of the longitudinal wave becomes zero, 
which means that here the wave motion occurs in the transverse direction only and one can 
logically expect the mode of the transverse standing wave to change upon passage from the 

region ~ > 0 to the region ~'< 0. This is possible when two different half-waves coexist at 
the point ~ = 0, i.e., one node of the C-wave is located here. The two half-waves adjoining 
this node correspond to intervals 0 ~ 0  and ~2~0, respectively, on each of which the 
phase changes by ~. Therefore, according to expressions (21), m/~ = 2D(rm) (m = 1, 2, ...). 
Here m = I for the half-wave 0~0;and m = 2 for the next half-wave ~e~0. From tabu- 
lated values of D(r) [4] we obtain rl = 0.74 and r2 = i.i; correspondingly a = 0.23 at r = rl, 

= 0; anda = 0.12 at r = r=, ~=~ =. From solution (20) we determine the first node~= = 
-0.09 of the wave in the region ~ < 0. The maximum wave amplitude occurs at r = 0 and ~o = 

0.35, correspondingly. We have ~:~ =-0.15 for the inner boundary and ~ = 0.85 for the outer 
boundary. 

According to relation (15), the interval of vortex existence in a longitudinal wave with 
k = 13b/3xl is 2Ax = 13b/3xI-~(l + ~)-~/~. When 3b/3x = -~/~x, therefore, the longitudinal 
dimension (radius) of the vortex will be Ax = ~(1 + ~=)-I/~x/2~. A freely expanding real 
vortex of the largest dimension must be able to occupy the entire width of the stream [3], 
within a certain bounded region where its ~otion is in a bound state. Such a vortex will 
have its maximum bounded dimension at the point ~--~0, so that Ax = ~(I + ~)-~/~x/2~o (at 

= 0 this dimension Ax would be infinitely large and, therefore, we have assumed the maximum 
wave intensity to occur at a point ~=~0> 0). Such a vortex is contained within the region 
0 ~  and, therefore, Ax = yo = ~oyx. Combining the two definitions of Ax, we obtain y = 
~/2~(I + ~)~/= and, thus, y = 0.65 as the result. Consequently, the fluctuation peak 
occurs at yo = 0.212x, the inner absolute boundary of fluctuations is located at y~ =-0.091x, 

and the inner absolute boundary of the "throw-away"regionin a large vortex is located at 
y= = --0.0545x. The outer absolute boundary of turbulence is located at y~ = 0.515x. The 
absolute level of fluctuations drops sharply in regions ~<~ and ~>~0 �9 When the stream 
shifts within the region of large fluctuations ~ ~ 0 ,  then the width of the mixing layer 
within the range of average flow is yo -- y~ = (~0--~)y~=0,27 x. This agrees with available 
experimental data [3, 5]. 

The average flow of the vortex medium will be made to obey the equations of motion and 
continuity 

Ou au, a~ ou av U - - + o - - = p - i  , - - +  = 0 ,  ( 2 2 )  
O/ Oy Oy Ox Og 
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with the longitudinal component u and the transverse component v of the velocity such that 

u = Oq/Oy = uo:', v = -- OqlOx = ?Uo (r -- :), q = ?uox[ (~), 

where q is the flow function and Uo is the velocity of the unperturbed stream. The shearing 
stress T will be expressed as T = ~h3u/3y, with the quantity ~h playing the role of eddy vis- 
cosity ~T and ~ denoting the characteristic numerical parameter of the problem (explained in 

Appendix). In the "boundary layer" approximation 0u = h3b/3y and, thus, T = ~9(3b/3y)-lu~u/ 
~y. According to Eq. (22), 

f f"-}-nZ(aZ:':") ' = O, n 2 --  ~ (23) 
? 

It is necessary to satisfy the conditions at the limits of the interval ~cp0, inasmuch 
as a wave packet with a sufficiently intense average motion must include not only the region 
of maximum fluctuation intensity but also the half-wave ~2~q0~0 , where momentum is retained 
in the main stream (otherwise the average motion would not spread over the region q~>0) . 

At the boundary q0=~2, where v = 0 and u = Uo, we obtain 

q ) 2 = - - 0 . 0 9 ,  f - - - - % ,  f ' =  1. ( 2 4 )  

At the lower boundary of average flow u = 0 and thus 

: ~0, f' = o. (25) 

There also prevails the condition of smooth coupling between the given layer and the unper- 
turbed stream 

: ~2, f" : 0. (26) 

We now transform Eq. (23) to variables r, ~(r) = f!(9). Then expression (]8) yields 

f '  : -T- exp r _ _ _ ~  2 f ,  _-- exp 2r ~ (o" 
a0 V 2 -  ~ ' '  2a~ -~ 2ro ' ) ,  (27) 

and, consequently, we have 

9 (~ -}- nero') (o" s 2ro') + n z [o' (o" + 2to')]' : O. ( 2 8 )  

We will solve the problem (24)-(28) by the perturbation method. As the initial approximation 

we assume a linear velocity profile in the layer so that f" = --B is some constant quantity. 
This initial approximation is, according to the second of relations (27), equivalent to the 

equation 

o" -t- 2 to '  = 20, O = -- ~a~ exp (-- r 2) = O (r). ( 2 9 )  

for 2~ instead of the corresponding expression in Eq. (28), we Inserting the expression (29) 
obtain the equation 

2 
o"--2no' -~ cr-: O, ( 3 0 )  

n 2 

a consequence of the approximation which ignores the curvature of the profile and, thus, a 

form of "compensation" of such perturbation of Eq. (28) through exaggeration of the curvature 
factor. The result of further refinement, viz. of averaging (adding) Eqs. (29) and (30) 

0"+ ~ 0 : 1  O(r), (31) 
n 2 

is found to be acceptable. The constant B in the expression for ~(r) replaces the integra- 
tion constant, which would have appeared here if the order of Eq. (28) could be reduced in a 
rigorous manner. The constant B can, therefore, be determined from one of the boundary con- 
ditions. 

For the Eq. (31) we will now construct the inner limiting solution ~ = 02 at r + ra and 
the outer limiting solution ~ = Oo at r + 0 

o0 = ci  cos (r/n) + c2 sin (r/n) -F n 20 (0), 

o2 = c3 co%(r/n) + cA sin (r/n) + ~ 0  (r~). 

The arbitrary constants ci, ..., c4 must be such that the limiting solutions will coincide at 
the boundaries of the (0, r2) interval. Taking this into consideration, we obtain the compo- 
site solution, put in the form of the sum of both limiting ones, corrected by subtraction of 
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Profiles of (a) longitudinal velocity, (b) Velocity 
fluctuations, and (c) shearing stress. 

the inner limit of the outer solution oo(r2) [6]: 

0.17n cos (r/n) 0.17n cos (r.Jn) 
--  sin (r~/n--------) 2 sin (rJn) + ~ [0 (0) @ 0 (r~)]. (32)  

He re  0 ( 0 )  + 0 ( r 2 )  = - -0 . ' I7B.  E q u a t i o n  (32)  t a k e s  i n t o  a c c o u n t  t h e  c o n d i t i o n  o '  = 0 a t  t h e  
o u t e r  b o u n d a r y  r = 0 o f  t h e  l a y e r ,  t h i s  c o n d i t i o n  f o l l o w i n g  f r o m  c o n d i t i o n s  ( 2 5 ) ,  a s  w e l l  as  
t h e  c o n d i t i o n  o '  = - - a o 4 ~  exp (--r~) = - - 0 . 1 7  a t  i t s  i n n e r  b o u n d a r y  r = r2  b a s e d  on t h e  s e c o n d  
o f  c o n d i t i o n s  ( 2 4 ) .  I t  f o l l o w s  f rom c o n d i t i o n s  (26)  t h a t  a t  r = r2 = 1.1 we h a v e  o" = - - 2 r e '  
T h e r e f o r e ,  one  c a n  w r i t e  t h e  e q u a t i o n  2nr2  t g  ( r 2 / n )  = - - I ,  w h i c h  y i e l d s  n = 0 . 4 6 4  and  t h e n  

= ~n 2 = 0 . 1 3 ,  as  w e l l .  The f i r s t  o f  c o n d i t i o n s  (24) s i g n i f i e s  t h a t  o = - 0 . 0 9  a t  r = r2 and  
t h u s ,  a c c o r d i n g  to  Eq. ( 3 2 ) ,  g = 5 . 9 n - 2 1 0 . 1 8  + 0 . 1 7 n  c t g  ( 1 . I / n ) ] .  C a l c u l a t i o n s  y i e l d  B = 
2.72 on this basis. We finally have 

[ (~) = a (r) = 0.113 cos (2.150 - -  0.009, (33 ) 

exp r z ~, 
u__ = f, (~) = a 0 i J 2  (r) = 0.43 exp r~ sin (2.15r). (34)  
u0 

A c c o r d i n g  t o  e x p r e s s i o n  ( 3 3 ) ,  t h e  z e r o  f l o w  l i n e  c o r r e s p o n d s  to  r = 0 . 6 9 3  o r  q 0 ~ , 0 . 0 1 5 ,  y / x  = 
0 .0091  h e r e .  

The c a l c u l a t e d  p r o f i l e  o f  a v e r a g e  v e l o c i t y  i s  shown i n  F i g .  2a ,  w h e r e  d o t s  r e p r e s e n t  
e x p e r i m e n t a l  d a t a  [5 ] .  The v a l u e s  o f  y+ c o r r e s p o n d  to  u = 0 .5Uo ;  y+ = 0 . 0 5 1 x  a c c o r d i n g  to  
c a l c u l a t i o n ,  and  y+ = 0 . 0 5 4 x  a c c o r d i n g  to  t h e  e x p e r i m e n t  [ 7 ] .  

I n a s m u c h  as  pa=U2/2 i s  t h e  m a t h e m a t i c a l  e x p e c t a t i o n  o f  f l u c t u a t i o n  e n e r g y  by  d e f i n i t i o n ,  
a2U 2 -~ a 2 u  2 will be the dispersion of deviations of the forward velocity, and the relative rms 
intensity of fluctuations of the forward velocity will thus be u'/u = a. The theoretical pro- 
file of u'/uo is compared in Fig. 2b with the experimental data according to R. P. Patel [5], 
along with the experimental Lipman relation (dash line) and Wygnanski relation (dash-dot line) 
[5, 7]. The theoretical relation T/~uao = ~a2f'f '' or 

= 0.1~ exp r2 sin (2,150 [r sin (2,150 + 1,075 cos (2.1501 
ou~ 

i s  a l s o  compared  w i t h  e x p e r i m e n t a l  d a t a  [5] ( d o t s  i n  F i g .  2 c ) .  

APPENDIX 

Just as in the kinetic theory, we have PT ~ pu'l with u' denoting the fluctuation of 
velocity on the interval of I ~ (3b/3u) -I of vortex-particle oscillation (both quantities are 
statistical means). Spontaneous appearance of large vortices is caused by action of such 
velocity fluctuation in the direction tangent to a closed contour, which thus becomes the 
contour of the vortex [3]. For a circular contour with radius L ~ Ax, for instance, the 
likely (in the rms sense) circulation F will be such [3] that 
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u" = ~F , F = < (~wdl )  z > 1/2, u'~----- < w 2 > 1/z 
2 (2ulL 

Here w is the velocity fluctuation on a contour element dl. It is legitimate to propose that 
the measure of rotational excitation in a vortex is determined by parameter h, similar to the 
Planck constant in quantum physics -- an analog of our h -- serving as the measure of the inner 
angular momentum of a rotating particle. We then have h ~ pF (in a nonvortical stream h § 0 
as F § 0). On the basis of this estimate we obtain ~T = ~h and ~ ~ 0.5(7/~L) I/2. For in- 
stance, ~ = 0.| when L = 51. The circulation F is expressedhereinthe"isotropic turbulence" 
approximation and, therefore, the preceding treatment is appropriate when no strong inhomo- 
geneities occur in the fluctuations as, for example, in free turbulent streams. 

NOTATION 

Here ~ is the wave function; a, wave amplitude; b, wave phase; U, modulus of the veloc- 
ity; p, density (incompressible fluid); h, "quantum" parameter; x, y, longitudinal coordi- 
nate and the transverse coordinate in the mixing layer; and t, time. 
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FLOW MODEL OF A BOILING LIQUID IN NOZZLES 

V. N. Blinkov and S. D. Frolov UDC 532.529:536.423.1 

A nonequilibrium mathematical model of flow is constructed for a boiling liquid 
in nozzles. The theoretical results are compared with empirical results for the 
ease of flow of boiling water. 

Present theoretical models of flow of a boiling liquid in nozzles (tubes) mainly aim to 
determine the maximum flow rate. A critical survey of these models is contained in [l, 2]. 
It is seen that homogeneous equilibrium and metastable models are the most widely used, along 
with a model allowing for discrete phase flow with relative slip and simple models consider- 
ing the thermodynamic nonequilibrium of the process using empirical coefficients. It was 
shown in [3] that the use of such models is limited by the complexity of the flow structure 
of a boiling liquid and the nonequi!ibrium of exchange processes between the phases. In con- 
nection with this, it is important that a theoretical model of boiling liquid flow in nozzles 
be constructed which considers the structure of the flow and the effects of nonequilibrium of 
the interphase transfer. Such a model should describe the origination of the vapor phase in 
the liquid flow and the combined flow of the vapor and liquid phases. 

Well-known experimental investigations of the structure of a boiling liquid flow in Laval 
nozzles [4-8] with moderate initial parameters show that boiling begins primarily on the 
nozzle walls. The method in [9] is used to determine the intensity of this vapor formation. 
It is assumed that vapor bubbles are generated until the vapor content of the mixture reaches 
a value which is limiting for the existence of a bubble structure (~ = 0.74). 
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